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Mode self-locking in gas lasers 
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University of Sussex, School of Mathematical and Physical Sciences, Brighton, 
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Abstract. The Lamb theory of mode self-locking in gas lasers is approximated to 
provide criteria for self-locking to occur in practical systems. I t  is predicted that 
self-locking should be fairly easily attained in the He-Ne 1.15 pm and 0.633 pm 
lasers, and this is confirmed by experiment. 

1. Introduction 
The phenomenon of mode self-locking in a gas laser was apparently first observed by 

Javan (private communication to Lamb 1964). Self-locking in a He-Xe 0.633 pm laser 
was later observed by Crowell (1965) and similar effects in an Ar+ laser operating at 0.488 pm 
have been reported by Gaddy and Schaefer (1966). 

I n  semiclassical terms, a gas laser can be considered as a cavity oscillator producing 
oscillation in a number of transverse electromagnetic standing wave modes, each of which 
can be described by the product of a space-varying term and a time-varying term. At any 
point in the cavity the amplitude of the electric vector of the field can be defined by 

= 2 ~ n m C ? ( W ’ n m q ( ~ ) *  
nmq 

The indices 72, m and q define a particular mode of oscillation. In  general, the U(r)  terms 
depend only upon the dimensions of the cavity. For a passive cavity, the time-dependent 
components Afimq(t) will have no fixed phase relationship from one mode to the next. 
However, if oscillation in the cavity is maintained by an induced electric polarization term, 
the situation may occur when a time-independent phase relationship is set up between 
the modes. The  modes are then said to be locked. As far as the output of the laser is 
concerned, locking has the important effect that constructive interference can take place 
between the various frequency components of the laser output. In  some cases an output 
consisting of a train of pulses may result. 

Locking is most commonly produced by the insertion of a time-varying loss into the 
cavity (see Crowell 1965), but may also occur spontaneously. Statz (1967) has calculated 
the conditions for such self-locking to occur and suggests that in gas lasers it should be a 
fairly rare occurrence. In  the present work, calculations employing the semiclassical theory 
of Lamb (1964) are used to derive approximate expressions for the conditions under which 
self-locking can occur in a gas laser. The  results suggest that self-locking should be a 
fairly common occurrence, and this agrees with experiments performed on He-Ne 0-633 ,um 
and 1.15 pm lasers. 

2. Theory 
The type of mode self-locking described above essentially describes three or more 

infinitely long wave trains adding together in constructive interference. Simple wave theory 
shows that this can only occur when the wave frequencies form a simple arithmetical 
progression and the phase terms have a time-independent relationship. I n  a passive laser 
cavity the mode frequencies can be defined to a good approximation by the equation 

where c is the velocity of light, d the length of cavity, q an integer and A the frequency 
interval between modes. The  frequency condition for self-locking holds for this case, but 
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there are no restrictions on the relative phase and so locking does not occur. When the 
cavity contains an active medium, the frequencies of oscillation are ‘pulled’ from the passive 
cavity resonance owing to the frequency dependence of the gain. In  general, neither locking 
condition will hold. However, for a medium which is inhomogeneously broadened, Lamb 
showed that the conditions for locking can occur by virtue of the fact that ‘combination 
tones’ are induced in the medium at frequencies close to the passive cavity frequencies. 
Under certain conditions there is a strong interaction between these ‘tones’ and the pulled 
cavity resonance, such that oscillation occurs preferentially at the combination tone 
frequency. In  this situation the frequency condition for locking is satisfied. The phase 
condition will also be satisfied and so self-locking can occur. 

Lamb derived equations for the field strength, frequencies of oscillation and relative 
phases of three modes oscillating simultaneously in a laser. The  main equations of interest 
in the present case are those determining the frequencies vl, v2, v 3  and phases $51, &, 41~ of 
three modes of amplitude E,, E2 and E,. These are given by equations of the form 

vl+& = Q,+ a,+~1E12+~12E22+~13E32-E22E3E1-1(~23 cos$) (1) 

~ ~ $ 4 ~  = Q3+ u3+p3E32+~31E12+732E22-E22E1E3-1(~21 cos$) (3) 
v2+& = Q,+ a2+p2E22f7alE12+~23E32+E1E3(1713 sin$+E13 cos $) (2) 

where 

The Qn terms are the passive cavity resonant frequencies and the an terms describe the 
pulling of the modes owing to the shape of the Doppler-broadened gain curve. The  terms in 
p,En2 describe power-dependent ‘pushing’ of the mode frequencies and terms in r,,Em2 
describe ‘mode repulsion’ effects between modes. The  rlnm and E,, terms are produced 
by combination tones in the active medium, and y5 defines the ‘relative phase angle’ between 
the three modes. From the definition of locking given above, it can be seen that in the 
present case self-locking occurs when $ is time-independent. 

By manipulation of equations (1) to (3) a differential equation for $ can be produced: 

* = (2v2 - v1- v3)t + (2$52 - $51 - $53). 

$ = a + A s i n $ + B c o s $  (4) 
where 

a = (2a2 - al - a3) + (2pzE22-p1E12-p3E32) + interaction terms 
A = - (2ElE371, + Ez2E1Es-1v21 + E22E3E,-1723) 
B = - (2ElE3E13- E22E3E1-1~23- E22E1E3-1~,1). 

Lamb demonstrated that two situations exist: If A2+B2 < u2, $ is a linear function 
of time, and the modes are not locked. If A2 + B2 > u2, a pole exists in the integral solution 
of (4) and $I cannot have a linear dependence on time. Hence 2 v 2  - v l  -v3 must approach 
zero rapidly and 

v3 -v2 = v 2  -VI. 

The relative phase rapidly approaches a constant value which may or inay not be zero, 
depending on the value of a. The  modes are therefore locked. It should be noted that 
only if the relative phase angle is close to zero will sharply defined trains of pulses be 
produced. 

Thus the necessary criterion for self-locking is given by 

(A2+B2)l i2  1 0 1 .  ( 5 )  
The expressions for A, B and a given by Lamb are of considerable complexity even 

for the relatively simple case of three-mode operation. In  particular, it can be seen that 
they depend on the values of the field amplitudes which are defined by three further 
equations of the form (1)-(3). An analytical solution of the problem thus involves the 
solution of six simultaneous differential equations. Approximate solutions which will be 
of use in deciding the possible conditions for mode locking may be obtained by making 
certain simplifying assumptions. 
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T o  a first order of approximation, it is possible to take the mode amplitudes as being 
equal to their ‘uncoupled’ values (setting all coupling terms equal to zero) : 

where U, describes the small-signal gain of the system, Pn describes saturation, and expres- 
sions for both terms are given by Lamb. Assuming that fin - w < AV,, the Doppler width, 
and that N2 4 AT, a simple expression for (A2 + B2)lI2 may be obtained. For experimental 
purposes this is best written for the case of three modes in terms of the loss L, which 
must be inserted into the cavity to extinguish the laser, and the inserted loss L required 
to produce a given laser intensity: 

where Yab = $(ya+yb), as defined by Lamb. In  this case the centre mode is considered 
to be displaced from the centre of the gain curve by an amount aA. 

The cr term can be evaluated to the same order of approximation, and is found to fall 
into two parts. One, due to pulling, is dependent only upon the shape of the gain curve 
and is given by the un terms in equation (4): 

6aA4 
T (  0 * ~ A v , ) ~  

2cr’ - U1 - U 3  = Lm. 

The intensity-dependent pushing term is given from equation (4) by 

p = 2pzEZ2 -p1E12-p3E32 + interaction terms. 

T o  the present order of approximation 

T is a complicated function of Yab,  a and A, describing repulsion effects between the holes. 
It is small and slowly varying compared with the pushing term in p .  Substituting from 
equations (6), (7) and (S), it is possible to write down an explicit form for the locking criterion 
defined in ( 5 ) .  For comparison between theory and experiment, it is useful to write this 
explicitly in terms of the measurable quantities L, and L in the form 

A’(L,-L) 9 cr’L,+p’(L, -L) (9 )  
where A’ is defined from (6) as (A2+B2)112/(Lm-L), cr’ is defined from (7)  as 
( 2 0 ~ -  crl- cr3)/Lm and p’ is defined from (8) as p/(Lm-L).  

All the above equations have been calculated in the approximation yab, A < AV=, 
which might be expected to be valid for most gas laser systems. Only three modes are 
considered and interaction terms are only included to the first order. 

If more than three modes are considered, new interaction terms appear and can be 
calculated from Lamb’s theory. The effect of further modes on the self-locking criterion 
given by ( 5 )  for the three central modes can be discussed qualitatively. As far as the 
right-hand side of equation (5) is concerned, the pulling terms are unaffected. The pushing 
terms would be increased slightly since the mode repulsion effect would be counter- 
balanced by repulsion between the middle three modes and the outer ones. 

The  effect on the left-hand terms is more complicated. New contributions to A and B 
will occur but these will depend on the amplitudes of the weakest modes and so might be 
expected to be small. Thus the three-mode approximation might be expected to give 
tolerably acceptable results for quite a wide range of operation. 

The  ‘non-interacting’ form of the field amplitudes is a more important source of error. 
This approximation will be worst when interactions are large, such as when there are 
distributions of modes symmetric with respect to the centre of the gain curve. The  pulling 
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of the modes will be unaffected, but the interaction terms in A and B and those in the 
expressions for pushing will increase. An alternative result for any particular set of values 
of a, Yab and A might be approximated by taking values for the amplitude E, calculated 
on the assumption of no locking, and substituting into equation (4). In  general, assuming 
that mode competition does not make three-mode operation impossible, self-locking will 
tend to become more likely as the interaction terms increase. This is expressed approxi- 
mately in the simple analysis by the fact that for a symmetrical disposition of modes, 
when a becomes zero, the right-hand side of equation (9) becomes zero and hence the 
modes are always self-locked. 

Finally, it should be noted that the Lamb theory rests upon third-order perturbation 
theory and might not be valid for high-gain laser systems. 

3. Results of simple theory 
Equation (9) describes the way in which the criterion for self-locking is functionally 

related to the various parameters of the laser system. This criterion can be described 
schematically as shown in figure 1. If A’ 2 p’+ U’, there is a value of laser intensity above 
which self-locking occurs. If A’ < p’+ 0’ self-locking is never possible. 

T o  the order of approximation employed so far, the criterion can be written 

The  criterion is highly sensitive to the value of A and quite sensitive to a. As mentioned 
above, when a = 0 self-locking will always occur. At other values of a there is a critical 
value of A/yab above which no locking is possible. 

Locked ’ N o t  l o c k e d  \ !  

I 
I n s e r t e d  l o s s  L- L, 
(- I n t e n s i t y  1 

Figure 1. Criterion for self-locking to 
occur in a gas laser (varying inserted 
loss). A locked region exists only when 

A’ > p’ + U’. 

41- 4 

Lock ing  poss ib le  

0 ‘L 0.1 0.2 0.3 1 1  0.4 ( 

Mode pos i t i on  pa ramete r  U 

Figure 2. Values of A/ysb for which 
self-locking is possible plotted as a 
function of the positions of modes with 
respect to the centre of the gain curve. 
Approximate diagram for lasers with 

y a b  < A *  

To take an example, figure 2 shows the criterion for locking in terms of the ratio A/yab 
as a function of a for He-Ne 1.15 pm or 0.633 pm laser lines. I t  can be seen that in both 
cases there is a reasonable range of values of a over which locking is possible. 

Comparable calculations have been made by Statz using a model not based on Lamb’s 
theory. Statz introduces combination tones via a saturation term differing substantially 
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from Lamb's. His results differ from those of the present work in that the term equivalent 
to A' is much smaller, suggesting that locking in gas lasers is unlikely except in special 
cases. This is in disagreement with the results of the Lamb approach. 

4. Experiment 
There are two possible means of investigating self-locking. Analysis of the laser output 

in the time domain may be carried out using ultra-fast photomultiplier tubes. When locking 
occurs, the continuous wave laser output becomes a chain of pulses of sub-nanosecond 
width. This is the method used by Crowell and by Gaddy and Schaefer. Alternatively, 
the output may be analysed in the frequency domain by observing beats between modes. 
This technique, in which the frequencies of the beat notes may be measured as a function 
of cavity Q, has been described by Allen et al. (1969). Self-locking is manifested by the 
disappearance of all save one of the beat notes at frequencies near c/2d and elimination of 
all beats at frequencies near 2c/2d except one at exactly double the frequency of the 
remaining lower beat. In  He-Ne 1-15 pm and 0.633 pm lasers, self-locking appeared 
quite spontaneously over a range of axial mode separations of 150-200 MHz. This was 
presumably due to the thermal drift of the cavity modes from a disposition in which the 
locking criterion was not satisfied to one in which it was. Locking could also be obtained 
by carefully tuning the laser mirrors or by decreasing the loss inserted in the cavity. A 
typical result showing the appearance of self-locking as inserted loss is decreased as shown 
in figure 3. At a certain value of L,  one of the beats near c/2d disappears and the beat 

Frequency o f  u 3 - u ,  (kHz1 
200 400 

I ' ' I ' ' ' s I ' '  '1 
i- i 

4 
I 
i 

Frequency o f  u 2 - u ,  , u 3 - v 2  ( k H z )  

Figure 3. Typical experimental result showing self-locking occurring as inserted loss 
is decreased in a laser cavity (He-Ne 1.1 5 pm) . 

near 2c/2d shifts to a frequency exactly double that of the remaining lower frequency beat, 
to within the resolution of the apparatus ( ? 500 Hz). As the intensity is further increased 
the beats become unlocked again, possibly due to thermal drift changing the value of a. 
The  beat frequencies just before locking occurs can be measured. In  a typical case of a 
laser oscillating at 1.15 pm with L, = 2.6% and A = 149 MHz, the observed value of 
2v2-v3-v1 was 6 7 5 6  kHz. For a laser oscillating at 0.633 pm with L,  = 1% and 
A = 164 MHz, the observed value of 2v2-v3-v1 was 13 & 1 kHz. 

5. Comparison of theory with experiment 
The work of Statz suggests that self-locking in a He-Ne laser should be a rare occur- 

rence. I n  fact, the experiment discussed above suggests that self-locking is common in an 
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unstabilized multimode He-Ne laser. This agrees qualitatively with the results of the Lamb 
theory, but it is necessary to see if quantitative agreement is obtained. 

The  criterion for self-locking of equation (5) gives the value for 2v, -vl -v3 attained 
just before self-locking occurs: 

The experimental results described earlier can be used to obtain approximate values for 
the term YaYb in this equation (the right-hand side is quite insensitive to the values of yab 
and a in the second bracket). 

For 1.5 pm, yayb = (8 i- 1) x ioi4 Hz and for 0.633 pm, YaYb = (6 i: 1) x loi4 Hz. 
The  value of YaYb for the 1.15 pm line agrees well with those measured by other 

techniques (e.g. Bennett et al. 1965), as does that for 0.633 ,um (Fork and Pollack 1965). 
This suggests that the value of A given by the approximation is as accurate as could be 
expected, and that the combination tone terms given by the Lamb theory are consistent 
with experimental observation. 

Figure 2 demonstrates the dependence of the self-locking criterion on mode distribution 
and mode spacing. Qualitatively, as the mode spacing increases the possibility of locking 
becomes less likely, although it is still possible for nearly symmetric tuning (assuming 
that a symmetric three-mode solution is possible). This was observed experimentally for 
both 1-15 pm and 0.633 pm. As the cavity length was decreased the time during which the 
modes were locked also decreased. At the highest value of h which could be used (limited 
by photomultiplier response), the modes remained locked for periods of the order of 
10-20 s, or remained unlocked for times of the order of minutes. This agreed with the 
observation of Allen et al. that modes were relatively stable with respect to the gain curve 
for periods of the order of minutes. With smaller values of A, modes could easily be locked 
and would remain locked for periods of minutes. 

The  results of the present theory, notably figure 1, appear to suggest the possibility 
that, given an unlocked three-mode situation, locking can only be obtained by increasing 
laser intensity. I t  may be noted that other authors (Crowell 1965, Gaddy and Schaefer 
1966) obtained self-locking by a process of decreasing the intensity of their lasers. This can 
easily be explained by noting that they looked for self-locking by tuning a laser until its 
output occurred in the form of very sharp pulses. These pulses only occur when the 
relative phase of the modes is nearly zero, i.e. when 2 4 A2+B2. This will only happen 
when a is nearly zero, producing a situation where strong competition takes place between 
the two outer modes. In  general, such competition will cause one of the modes to be 
extinguished, but if the gain of the laser is decreased the intensity is lessened and three- 
mode operation is possible. Only in this case will the locked modes interact to give a pulse 
output of the form observed by Crowell. 

6. Conclusions 
The approximate form of the Lamb theory suggests that mode self-locking is a fairly 

common event in He-Ye gas lasers. This is in agreement with experimental observations 
and in disagreement with the results proposed by Statz. The approximate approach gives 
qualitative insight into the self-locking processes and produces results in agreement with 
experiment. 
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